Abstract
The main purpose of this study is to explain the absorption of zinc from aqueous solution by grapheme oxide and functionalized grapheme oxide with glycine as the adsorbent surface. For confirmed functionalized graphene oxide, the glycine amino group was added to the surface of graphene oxide. The effects of the initial concentration of Zn(II) ions and contact time were studied. Results showed that with increasing initial concentration of Zn(II) ions, the adsorption capacity increased. The adsorption capacity did not show a large change after 50 min; therefore, for the study of kinetic parameters, the optimal time of 50 min was selected. The chemical structure of graphene oxide was confirmed by using FT-IR analysis. The adsorption process of Zn(II) ions graphene oxide and functionalized graphene oxide–glycine surfaces was fixed at 298 K and pH 6. The pseudo-first-order and the pseudo-second-order (types I, II, III and IV) kinetic models were tested for the adsorption process and the results showed that the kinetic parameters best fit type (I) of the pseudo-second-order model. A high R 2 was used to be the best match.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.