Abstract

Quicklime addition to soil at a remediation site was observed to sufficiently reduce TCE levels, but the cause of the removal could not be confirmed with the field data collected. Potential mechanisms for CaO treatment of trichloroethylene (TCE) in soil include degradation and volatilization. Since earlier studies found TCE degradation to occur during the hydration of CaO under conditions where volatilization was limited, research was conducted on mechanisms of TCE removal from soil by CaO application under conditions where volatilization was allowed to occur. TCE volatilization in soil treated with 0%, 5%, 10%, and 20% CaO doses was measured in experiments where the degree of volatilization could be tracked. The total TCE removal from soil spiked with TCE at CaO doses from 5% to 20% ranged from 97% to 99% of the initial TCE mass. Volatilization accounted for 64.4–92.5% of the TCE removal, with unrecovered TCE and TCE degradation accounting for the remaining fraction. The greater heat encountered with higher CaO doses helped minimize obstacles to TCE volatilization, such as high soil organic and clay content. Treatment with a 20% CaO dose, however, led to the formation of byproducts such as dichloroacetylene. TCE degradation to dichloroacetylene at the 20% CaO dose ranged from 2.7% to 6.4% of the initial TCE. Volatilization was concluded to be the dominant process for TCE removal from soil during CaO treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call