Abstract

In this study, porous activated carbon balls supported by nanoscale zero-valent iron composites (Fe@PACB-700) were used for the first time for the removal of trace Cr(VI) from aqueous solutions. The Fe@PACB-700 composites were prepared by a facile carbothermal reduction method and then characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The results show that nZVI particles have been successfully loaded onto PACBs. Fe@PACB-700 shows an excellent Cr(VI) removal efficiency of 91.2%. The maximum adsorption capacity of Fe@PACB-700 for Cr(VI) is 22.24 mg/g, which is 4.36 times that of PACB. The residual Cr(VI) concentration is below 20 ppb with the use of 0.15 g of Fe@PACB-700, which is much lower than the allowable concentration for Cr(VI) in drinking water (0.05 mg/L). The adsorption of Cr(VI) can be well described by the Langmuir isotherm model and pseudo-second-order kinetic model. Fe@PACB-700 still has a high removal efficiency of 80% after five cycles. Thus, Fe@PACB-700 has a great potential for Cr(VI) removal from aqueous solution. Graphical abstract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call