Abstract

Growing mechanization has released higher concentrations of toxic metals in water and sediment, which is a critical concern for the environment and human health. Recent studies show that naturally occurring and synthetic iron sulfide particles are efficient at removing these hazardous pollutants. This review seeks to provide a concise summary of the evolution in the production of iron sulfide particles, specifically nanoparticles, through the years. This review presents an outline of the synthesis process for the most dominant forms of iron sulfide: mackinawite (FeS), pyrite (FeS2), pyrrhotite (Fe1-x S), and greigite (Fe3S4). The review confirms that both natural forms of iron sulfide and modified forms of iron sulfide are highly effective at removing different heavy metals and metalloids from water. Concurrently, this review reveals the interaction mechanism between toxic metals and iron sulfide, along with the impact of conditions for remedy and rectification. None the less, modifications and future investigations into the synthesis of novel iron sulfides, their use to adsorb diverse environmental pollutants, and their fate after injection into polluted aquifers, remain crucial to maximizing pollution control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call