Abstract

The objective of this investigation is to evaluate the characteristics associated with degradation of toluene through the utilization of non-thermal plasma (NTP) generated via application of a low-work-function electrode and nanosecond pulsed power supply. Initially, a comparative analysis is made between toluene removal efficiency utilizing the low-work-function electrode and that achieved with the conventional stainless-steel electrode. The outcomes demonstrate that NTP generated by the low-work-function electrode exhibits markedly superior removal efficiency for toluene in comparison to the stainless-steel electrode operating at the same voltage. Subsequently, the impacts of voltage, pulse frequency, and initial concentration of toluene on the removal efficiency and production of by-products are investigated. It is found that as the voltage and frequency increase, the removal efficiency also increases, and a maximum toluene removal efficiency of 87.2% is achieved at a voltage of 12,000V and pulse frequency of 2000Hz. The removal efficiency first increases and then decreases with increasing toluene initial concentration. The investigation also finds that energy yield is negatively correlated with voltage and pulse frequency and positively correlated with the initial concentration. Finally, the reaction products were subjected to quantitative analysis using GC-MS. Based on the analysis results, potential reaction pathways are inferred.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call