Abstract

Transmembrane pressure pulsing (TPP) uses the frequent and periodic reversal of the transmembrane pressure to reduce flux resistances due to membrane fouling. This study examined the effect of TPP on the microfiltration of simulated drinking water (hydrated aluminum silicate solution). Solutions of kaolin clay (0.1–4.0 μm particles, at an approximate concentration of 500 mg l −1 and a turbidity of 402±17 NTU, 0.5 mM CaCl, 2.0 mM NaHCO 3, pH 7.5–7.8) were microfiltered with polyethersulfone (PES) 0.16 μm microfiltration membranes at an operating pressure of 30 kPa. Crossflow shear rates were varied between 165 and 1490 s −1. Pulse frequency was varied between 0.3×10 −2 and 2 Hz, and pulse amplitude was varied between −3 and −16.5 kPa. It was found that the crossflow shear rates did not significantly effect the non-pulsed permeate flux. An optimum pulse amplitude of about 10 kPa was necessary to maximize the permeate flux for pulse frequencies between 0.3×10 −2 and 2.0 Hz. To insure a reduced solute flux, pulse frequencies less than 0.1 Hz were required. These results indicate that TPP can significantly reduce membrane fouling by inorganic particulate materials that are potentially important constituents of natural waters without negatively impacting the rejection of sub-micron particles due to interactions with material accumulated on the membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.