Abstract
Abstract In this study, a magnetic carbon nanocomposite (MCNC) was prepared using peanut shell biomass as carbon source. The prepared adsorbent was characterised by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric/differential thermal analysis (TGA/DTA) and BET surface analysis. Batch experiments were carried out to determine the adsorption parameters of cetyl dimethylethyl ammonium bromide (CDEAB) on MCNC. Of the isotherm and kinetics models used, the Langmuir model fitted the equilibrium adsorption data best, while the kinetics data were best explained by the second-order kinetic pseudo-equation. The numerical values of enthalpy change (ΔH8 = 38 kJ mol–1) and Gibb free energy (ΔG8 = 70.95 kJ mol–1, 72.19 kJ mol–1 and 73.32 kJ mol–1 corresponding to 20°C, 30°C and 40 °C, respectively) were positive, while the value of entropy change (ΔS8 = –0.11 kJ mol–1 K–1) indicated an endothermic and non-spontaneous process. After determining the optimal adsorption parameters, the adsorbent was used in a hybrid plant with a membrane pilot plant equipped with ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes. In MCNC/membrane operation, an improvement in permeate flux was observed for the three selected membranes. The percentage retention of UF and NF membranes was also improved by MCNC pre-treatments in hybrid mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.