Abstract
This investigation demonstrates that sodium dodecyl sulphate (SDS) can be biodegraded efficaciously in MFC within a retention time of 12 h. The application of MFC for degradation of SDS and its corresponding effect on the power generation and organic matter removal capacity of MFC was first time quantified in this investigation. This investigation also illustrated the SDS induced microbial diversification of the anodic biofilm and correlates the same with the established SDS degradation pathway. Presence of microbial strains, such as Acinetobacter, Pseudomonas, Citrobacter, Treponema etc., capable of degrading complex and refractory organics was identified using the next-generation sequencing (NGS) analysis of the anodic biofilm. Compared to the identical control MFC, the power performance of MFC-SDS reduced by 66%. This was attributed to the inhibitory effect of SDS on the cell membrane as well as the biofilm growth. Furthermore, the chemical oxygen demand (COD) and SDS removal efficiencies exhibited that the microbes preferred L-cysteine over SDS as a substrate due to higher bioavailability of the former. In spite of the preferential choice of L-cysteine over SDS and the inhibitory effect of SDS over the formation of anodic biofilm, a constant SDS removal efficiency of 70% and above was achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Biodeterioration & Biodegradation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.