Abstract

In this work, SO2 was treated by reaction with dolomite limestone (24 µm) in a fluidized bed reactor composed of 500-590 µm sand particles. The influence of operating temperature (500, 600, 700 and 800oC), superficial gas velocity (0.8, 1.0 and 1.2 m/s) and Ca/S molar ratio (1, 2 and 3) on SO2 removal efficiency for an inlet concentration of 1000 ppm was examined. Removal of the pollutant was found to be dependent on temperature and Ca/S molar ratio, particularly at 700 and 800oC. A maximum removal of 76% was achieved at a velocity of 0.8 m/s, a temperature of 800°C and a Ca/S of 3. The main residence time of the powder particles was determined by integrating normalized gas concentration curves as a function of time; the values found ranged from 4.1 to 14.4 min. It was concluded that the reactor operated in bubbling fluidization under every operational condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call