Abstract

Pollution of water bodies with heavy metal ions is a major worldwide environmental problem. The objective of this study was to elucidate the mechanism in which metallic ions are adsorbed and reduced to metallic nanoparticles onto plant materials using microwave radiation. In this research, we have fabricated metallic silver and lead nanoparticles from their corresponding ions using the aquatic plants Azolla filiculoides and Pistia stratiotes (since identical results are obtained for both plants, the emphasis will be on the Azolla) under microwave radiation. Our data show that metallic silver and metallic lead nanoparticles were completely removed from the polluted solution and were embedded in the A. filiculoides surface after 5 min of microwave reaction. It was also found that, for both metals, reduction of the metallic ions was accomplished by the plant matrix without the need of an external reducing agent. Most of the particles had a spherical shape within the 10–50 nm size range. Mass balance data clearly indicate that most of the silver particles were found on the surface of the plant and not in the clean water. Pectin and α-glucuronic acid did not reduce the silver or lead ions under microwave radiation. We therefore hypothesize that perhaps the proteins or sugar alcohols in the plant matrix were serving as the reducing agents. We believe that this technique in which adsorption and reduction are combined using microwave radiation can be applied for removing and recycling metallic ions from contaminated water and industrial wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.