Abstract

The whole cell configuration of the patch-clamp technique was used to test the hypothesis that the presence of sialic acid residues influences both T- and L-type Ca2+ currents (ICa,T and ICa,L) in cultured pacemaker cells isolated from the rabbit sinoatrial node. Removal of these anionic sugar moieties by neuraminidase (1.0 U/ml for 5-20 min) increased ICa,T in five of nine cells (by a factor of 2.2-5.1) and ICa,L in three of six cells (by a factor of 1.2-1.6). In cells that did not exhibit such an increase, the enzyme reduced ICa,T but had no significant effect on ICa,L. In cells that exhibited an increase in ICa,T, exposure to neuraminidase also shifted the activation curve to more negative potentials and increased the slope of the inactivation curve. The enzyme did not influence the gating of ICa,L or the rates of inactivation of either ICa,T or ICa,L. The enhancement of ICa,T and ICa,L could not be mimicked by including neuraminidase in the patch pipette or by adding a contaminant of the enzyme preparation, phospholipase C, to the bath. When external Ca2+ was replaced by Ba2+, neither ICa,T nor ICa,L was increased significantly by neuraminidase. It is proposed that by removing sialic acid residues neuraminidase might directly alter the gating of T-type Ca2+ channels. On the other hand, the increased amplitudes of ICa,T and ICa,L might be due to a rise in intracellular Ca2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call