Abstract

In this study, the removal of selected pharmaceuticals including ibuprofen, diclofenac sodium, indomethacin, chlorpheniramine maleate, and paracetamol from water using natural Jordanian zeolite was studied. The influence of pH, contact time, adsorbent dosage, and initial pharmaceutical concentration on the adsorption process was investigated using batch and column methods. The optimal pH for the removal of all selected pharmaceuticals was found to be 2 except for diclofenac sodium where the optimal pH was 6. The optimum adsorption time was found to be 80 min. The percentage removal increased as the initial concentration of the pharmaceuticals increased from 10.0 to 50.0 mg/L except for indomethacin where the removal decreased as the initial concentration increased. After optimization, the highest removal was found to be 88.3, 30.1, 59.0, 85.8, and 12.7% for ibuprofen, diclofenac sodium, indomethacin, chlorpheniraminemaleate, and paracetamol, respectively. Langmuir and Freundlich isotherm models were used to evaluate the adsorption efficiencies of the investigated pharmaceuticals. The results demonstrated that Langmuir isotherm fits the experimental data for diclofenac sodium, indomethacin and paracetamol with adsorption capacity $$(Q_{\mathrm{max}})$$ of 4.8, 26.6, and 55.6 mg/g, respectively, whereas Freundlich isotherm fits the experimental data for both ibuprofen and chlorpheniramine maleate. Continues flow experiment was performed on ibuprofen under constant influent concentration and fixed flow rate. Equal eluted fractions of 100 mL were collected and analyzed for ibuprofen content. The results indicated that percentage removal of ibuprofen on zeolite was found to be the highest after fraction 9 with 78% removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call