Abstract

Air cleaning is an effective and reliable method in indoor airborne SARS-CoV-2 (Severe Acute Respiratory Syndrome Corona-Virus 2) control, with ability of aerosol removal or disinfection. However, traditional air cleaning systems (e.g. fibrous filter, electrostatic removal system) have some risks in operation process, including re-aerosolization and electric breakdown. To avoid these risks, the current study proposed an UV+Filter (ultraviolet and fibrous pleated filter) system to efficiently capture airborne SARS-CoV-2 aerosols and deactivate them in filter medium. It is challenging to quantitatively design UV+Filter due to complex characteristics of SARS-CoV-2 aerosols (e.g. aerodynamic size, biological susceptibility) and hybrid filtration/disinfection processes. This study numerically investigated the overall performances of different air cleaning devices (e.g. Fibrous-filter, UV+Filter, two-stage ESP (electrostatic precipitator) et al.) for control of SARS-CoV-2 aerosols and compared them in term of filtration efficiency, energy consumption and secondary pollution. The prediction of developed models was validated with the experimental data from literature. UV+Filter is the most reliable and safest, while its energy consumption is highest. The newly proposed design method of air cleaning systems could provide essential tools for airborne diseases control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.