Abstract

To determine the pathogenic virus removal performance of an adsorbent produced from hydrothermal carbonization of sewage sludge. The removal of human pathogenic rotavirus and adenovirus was investigated with columns of 10 cm saturated sand with and without amendments of 1·5% (w/w) hydrochar. Virus concentrations were determined with reverse transcription (RT) quantitative polymerase chain reaction (qPCR). The experiments with sand showed 1 log removal, while the columns with 1·5% (w/w) hydrochar amendment showed 2 to >3 log removal for both viruses. Deionized (DI) water flushing into the virus-retaining columns revealed that the secondary energy minimum played a larger role in the attachment of rotavirus onto hydrochar surfaces than adenovirus. Improved virus removal may be attributed to the introduction of hydrophobic and/or meso-macro surface structures of the hydrochar providing favourable attachment sites for viruses. Hydrochar amended sand beds showed improved virus removal efficiencies exceeding 99·6% corresponding to 2·4 log removal. The addition of humic acid in the influent did not hinder the adsorptive removal of viruses. This study suggests that hydrochar derived from sewage sludge can be used as an adsorbent for virus removal in water treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.