Abstract

Herein, commercially available Dowex 5WX8, a cation exchange polymeric resin, was modified through solvent impregnation with t-butyl phosphate (TBP) to produce a solvent impregnated resin (SIR), which was tested for the removal of rhodamine B (RhB) from water in batch adsorption experiments. The effect of SIR dosage, contact time, and pH on RhB adsorption was studied and optimized by response surface methodology (RSM), interaction, Pareto, and surface plots. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were respectively used for characterizing SIR surface morphology and identifying active binding sites before and after RhB adsorption. SEM showed that the pristine SIR surface was covered with irregular size and shape spots with some pores, while RhB saturated SIR surface was non-porous. FTIR revealed the involvement of electrostatic and π–π interactions during RhB adsorption on SIR. Dosage of SIR, contact time, and their interaction significantly affected RhB adsorption on SIR, while pH and its interaction with dosage and contact time did not. The optimum identified experimental conditions were 0.16 g of SIR dose and 27.66 min of contact time, which allowed for 98.45% color removal. Moreover, RhB adsorption equilibrium results fitted the Langmuir isotherm with a maximum monolayer capacity (qmax) of 43.47 mg/g.

Highlights

  • Textile industries are among the largest consumers of water, dyes, and different types of chemicals, resulting in the generation of large volumes of highly toxic effluents

  • When the response linearly varies with the independent variable, the first order model, which is given by Equation (4), is satisfied

  • solvent impregnated resin (SIR) surface was covered with spots irregular

Read more

Summary

Introduction

Textile industries are among the largest consumers of water, dyes, and different types of chemicals, resulting in the generation of large volumes of highly toxic effluents. The discharge of these effluents without prior treatment can be lethal to the environment. It reduces sunlight penetration into water bodies, which can be lethal for aquatic life due to limited availability of oxygen for respiration [3,4,5]. Before effluent discharge, it is necessary to apply intensive treatment processes to minimize its concentration in water bodies

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.