Abstract

Abstract Rapid development of hydraulic fracturing for natural gas production from shale reservoirs presents a significant challenge related to the management of the high-salinity wastewaters that return to the surface. In addition to high total dissolved solids (TDS), shale gas-produced brines typically contain elevated concentrations of radium (Ra), which must be treated properly to prevent contamination of surface waters and allow for safe disposal or reuse of produced water. Treatment strategies that isolate radium in the lowest volume waste streams would be desirable to reduce disposal cost and generate useful treatment by-products. The present study evaluates the potential of a commercial strong acid cation exchange resin for removing Ra2+ from high-TDS brines using fixed-bed column reactors. Column reactors were operated with varying brine chemistries and salinities in an effort to find optimal conditions for Ra2+ removal through ion exchange. To overcome competing divalent cations present in the b...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.