Abstract

A sensitive and quantitative procedure for the detection of pyrimidine dimers in yeast nuclear DNA is described. The assay employs dimer-specific, endonuclease activities from Micrococcus luteus together with DNA sedimentation through calibrated, alkaline sucrose gradients to detect endonuclease-induced, single-strand breaks. Breaks were induced in a dose-dependent manner from 0 to 80 J m −2 at 254 nm and in numbers equivalent to the numbers of dimers induced by similar doses (Unrau et al., Biochim. Biophys. Acta, 312 (1973) 626–632). This procedure also allows the use of [6- 3H] uridine to label cellular nucleic acids, but dose not require extensive DNA purification to eliminate concomitantly labeled RNA. Endonuclease-sensitive sites in the wild-type, haploid strain S288C, after irradiation with 5 J m −2 (254 nm), were removed in less than 5 min when cells were incubated in buffer (pH 7.0) at 28°C. After irradiation with doses from 30 to 100 J m −2 site removal in S288C required longer postirradiation incubations and was about 90% complete. In a radiation-sensitive strain carrying the mutant allele rad4-3 the number of endonuclease-sensitive sites remained constant for 6 h after irradiation with 5 J m −2. The retention of sites in this strain indicates that it is defective in the excision of pyrimidine dimers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.