Abstract

Biofiltration of an air stream containing p-xylene has been studied in a laboratory hybrid biofilter packed with a mixture of mature pig compost, forest soil and the packing material which was made of polyethylene (PE) and used in the moving bed biological reactor (MBBR) in wastewater treatment. Three flow rates, 9.17, 19.87 and 40.66 m 3 m −2 h −1, were investigated for p-xylene inlet concentration ranging from 0.1 to 3.3 g m −3. A high elimination capacity of 80 g m −3 h −1 corresponding to removal efficiency of 96% was obtained at a flow rate of 9.17 m 3 m −2 h −1 (empty bed residence time of 132 s). At a flow rate of 40.66 m 3 m −2 h −1 (empty bed residence time of 30 s), the maximum elimination capacity for p-xylene was 40 g m −3 h −1 and removal efficiencies were in the range of 47–100%. The production of carbon dioxide ( P C O 2 ) is proportional to elimination capacity (EC) and the linear relation was formulated as P C O 2 = 1.65 EC + 15.58 . Stable pH values ranging from 6.3 to 7.6 and low pressure drop values less than 0.2 cm H 2O (19.6 Pa) of packing media in compost-based biofilter of hybrid biofilter were observed, which avoided acidification and compaction of packing media and sustained the activity of microorganism populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.