Abstract

The exaggerated release of industrial wastes especially those containing phenol into the environment led to the contamination of both surface and groundwater supplies. In present work a synergistic and combined system technique between three operations, adsorption of phenol via (rice husk or granular activated carbon GAC as adsorbents) together with stripping by airflow and advance oxidation via hydrogen peroxide as the oxidation agent, to evaluate the possibility of using a proposed new design for internal airlift loop reactor for removing the phenol from wastewater. The experiments were set up in a cylindrical Perspex column consisted of a transparent outer column having a 15 cm inside diameter and 150 cm height that included an internal draught tube of 7.5 cm and extending vertically to 120 cm top contains a bed having a dimension (7.5 x 30 cm) filled with adsorbent materials (rice husk, granular activated carbon GAC) and a volume capacity 25 liters. The experiments were conducted under the influence of both of the following variables air flow rate(2-20) (L/min), treatment time(5-60 min), the molar ratio of hydrogen peroxide to phenol,(1:10, 1:15 and 1:20)). The results showed the success of the proposed design with obtaining a removal efficiency (83%),( 81%)when using GAC and the rice husk as adsorbent materials respectively, with minimum remediation time 60 minutes, airflow rate of 18 L/min, and molar ratio(20) hydrogen peroxide to phenol. This study demonstrated that the proposed synergistic system could be utilized for the remediation of contaminated aqueous systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call