Abstract

In this study, removal of phenol from wastewater using Electro-Fenton method was achieved. The effect of operational parameters such as current density, initial concentration of phenol, and hydrogen peroxide dosage on the removal of phenol were investigated. The removal efficiencies were determined using chemical oxygen demand (COD) concentrations. The results showed that, the removal of phenol was dependent on the concentrations of hydrogen peroxide and applied current. Increasing the applied current resulted in higher removal efficiency (RE) of phenol. On the other hand, the energy consumption also increased with the increasing the current density. Thus when the optimal current density and potential have been selected, either higher removal rate or lower energy consumption can be preferred. The phenol removal significantly increased by increasing H2O2 dosages from 1500 to 2500 mg L-1. The phenol concentration of 300 mg L-1 was removed with the removal efficiency of 93% at the current density of 40 mA cm-2 with the using of 2500 mg L-1 H2O2. Increasing of initial phenol concentration resulted in decreasing of removal efficiency. Removal efficiency decreased from 75% to 62 % when the initial phenol concentration increased from 100 to 500 mg L-1 after 45 min of operating time. As a result of the study, it can be said that, the removal of phenol was successfully achieved using Electro-Fenton method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call