Abstract
Ulva prolifera (U. prolifera) has been frequently involved in terrible algal proliferation in coastal areas. Although it is known to be associated with green tide, its contribution to the natural attenuation of the polycyclic aromatic hydrocarbons (PAHs) in seawater has not been evaluated. In this study, the removal of phenanthrene using U. prolifera collected from coastal water with green tide blooming was investigated. The results showed that phenanthrene could be removed efficiently in the presence of both the live and heat-killed U. prolifera. The phenanthrene concentrations of the live algae treatment decreased smoothly from 10.00 to 0.80μgL−1 through the whole process, while those of the heat-killed algae treatment decreased sharply from 10.0 to 2.71μgL−1 in one day and kept constantly after that. The in situ monitoring and visualizing using laser confocal scanning microscopy (LCSM) confirmed the accumulation of phenanthrene in U. prolifera. The increase in nutrient and temperature led to the increase of phenanthrene removal rate, while the salinity had less influence on the removal of phenanthrene. The removal efficiency by U. prolifera had a good linear relationship with phenanthrene initial concentration (r2=0.999) even at 100μgL−1 which was higher than its environmentally relevant concentrations. High removal efficiency (91.3%) was observed when the initial phenanthrene concentration was set at environmental relevant concentration (5μgL−1). Results of this study demonstrate a potential new natural attenuation process for typical PAHs in coastal water during the outbreak of green tide. These findings indicate that the outbreak of harmful green tide algae may bring positive environmental benefits in the terms of the removal of harmful organic pollutants from coastal waters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.