Abstract

Researches on the polymerization of aqueous pentachlorophenol (PCP) by the catalysis of horseradish peroxidase (HRP) with the existence of hydrogen peroxide (H2O2) were conducted. Factors, such as acidity, temperature, enzyme activity, and initial concentration of PCP and H2O2 that could influence the degradation were studied. Results showed that the optimum pH value for free enzyme was 5–6; relative higher temperature could accelerate the reaction greatly; PCP removal increased with an increase of enzyme concentration, and PCP (initial concentration 12.6 mg/L) removal percentage could reach nearly 70% under the highest enzyme concentration (about 0.05 u/ml) adopted in the experiment; removal percentage increased slightly with an increase of initial concentration of PCP, and when initial PCP concentrations were 13.0 and 0.7 mg/L, the removal percentages were about 73.7% and 35.7%, respectively; the molar ratio of the reaction between PCP and H2O2 was about 1:2. Based on the above results, researches on the removal of PCP by the immobilized HRP were conducted. The free HRP was immobilized on the polyacrylamide gel prepared by gamma-ray radiation method; then the immobilized HRP was filled into a column, and PCP was successfully removed by the immobilized HRP column. The results were compared with results using free HRP enzyme, which showed that the optimum pH value for the immobilized HRP is similar to that for the free HRP, and when pH=5.15, the immobilized HRP could reduce PCP with initial concentration 13.4 mg/L to the concentration of 4.9 mg/L within 1 h, and the immobilized HRP column could be used to repeatedly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call