Abstract
In this paper, a simple method was proposed to obtain hydroxyapatite (HA) and hydroxyapatite/partially hydrolysed polyacrylamide (HA/AD37) composite materials which where applied to lead retention from aqueous solution by means of the batch method. The characterization of the materials verified that the presence of AD37 created interconnected porosity in the composite HA/AD37 giving it a good swelling properties that conducted to an easy separation of the material from aqueous solutions. Retention experiments carried out by varying the dose of lead and the contact time between adsorbent and adsorbate showed that the maximum adsorption capacity (Qmax) obtained for 2072.2 mg/L as initial concentration of Pb2 + was equal to 984.63 mg/g for HA and 924.50 mg/g for HA/AD37. Furthermore, AD37 used alone cannot retain Pb2 + ions. Indeed, the calculated Qmax of AD37 part of the composite was of 806.57 mg/g. The obtained Qmax values was elevated more than the reported values in many literatures. Based on the correlation coefficient, the kinetic study proved that pseudo-second order model agrees well with the obtained experimental data for Pb2+ retention by both HA and HA/AD37. Also, isotherm study explored that adsorption of lead was best fitted by Langmuir model for HA and Temkin model for HA/AD37. At last, the mechanism of retention was probed by characterizing the adsorbents after contact with lead ions by XRD and SEM. The results showed the transformation of calcium-hydroxyapatite to different structures of lead hydroxyapatite confirming the presence of ion exchange mechanism between Ca2+ and Pb2+.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Main Group Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.