Abstract

Environmental and human health problems caused by Pb pollution have attracted much attention, and solidification and stabilization are effective means for its remediation. Improving the ability of biochar to remediate heavy metals through modification is the focus of current biochar research. This study used calcium-alginate gel (GB) and Fe3+ (magnetic) to encapsulate and improve sludge biochar (SB), and explored the adsorption behavior and passivation mechanism of Pb2+ on it from outside to inside. The magnetic-biochar (MB) in magnetic-biochar-gel microspheres (MBGB) showed a homogeneous dispersion and part of the Fe ion was detached from the MB into the three-dimensional pores of the gel. The results of kinetic, isothermal and pH adsorption experiments showed that the MBGB has 108.4 % and 200 % higher Pb2+ adsorption capacity and rate than SB and can be applied to pH 3–9. The adsorption of Pb2+ by MBGB is a multilayer adsorption with both physical and chemical mechanisms. Mineralogical and electrochemical results demonstrate that the cross-linking of the gel with magnetic-biochar (MB) can provide a directional diffusion channel for Pb2+ from the outside to the inside. The electron transfer rate of MBGB was significantly higher than that of SB (222.2 %) after the reaction. The dissolved cations and electrons on the MB guide Pb2+ from the MBGB surface to the internal MB quickly via accelerating the electron transfer and migration rate between Pb2+ and MB. Subsequently, the abundance of PO43− on the MB ensures stable mineral precipitation (Pyromorphite). Moreover, four-step extraction analysis confirmed that most of Pb2+ in MBGB was stable (36.2 % acid-soluble and 47.6 % non-bioavailable). Meanwhile, the Pb adsorption efficiency of MBGB was still >93.0 % after three cycles of adsorption-desorption. Excellent reuse performance and stability guarantee the environmental security of MBGB. The results of the study provide theoretical support for the efficient treatment of Pb2+ polluted water assisted by gel materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call