Abstract

An important step in the production of printed wiring assemblies (PWAs) is the postsolder removal of flux residues from the surface. Traditionally, this has been accomplished using CFC-113-based solutions, but the Montreal Protocol and the Clean Air Acts have forced the development of alternative cleaners. This is a study of the mechanisms by which aqueous solutions of a nonionic surfactant (pentaethylene glycol mono-n-dodecyl either (C{sub 12}E{sub 5})) remove films of flux residues (abietic acid in isopropyl alcohol) from PWA surfaces. Cleaning rates were studied in a rotating disk apparatus to control hydrodynamic conditions. The cleaning process followed a three-step mechanism. In the first stage, surfactant liquefies the organic by partitioning into the film. In the second and third stages, shear stresses at the PWA surface remove aggregates of the surfactant-laden liquefied AA from the bulk AA film and the PWA substrate, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call