Abstract
It becomes more difficult to identify and analyze the Electroencephalogram (EEG) signals when it is corrupted by eye movements and eye blinks. This paper gives the different methods how to remove the artifacts in EEG signals. In this paper we proposed wavelet based threshold method and Principal Component Analysis (PCA) based adaptive threshold method to remove the ocular artifacts. Compared to the wavelet threshold method PCA based adaptive threshold method will gives the better PSNR value and it will decreases the elapsed time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electronics Signals and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.