Abstract

The impacts of metal ions (Cu2+ and Fe3+) on nutrients removal and nitrous oxide (N2O) emission during the simultaneous nitrification, denitrification and phosphorus removal (SNDPR) process were evaluated and the mechanism was further investigated. Results showed that both Cu2+ and Fe3+ addition at moderate concentrations enhanced nitrogen removal by reinforcing the denitrification process. The long-term addition of Fe3+ weakened the removal of phosphorus by 2.3%–11.7%, due to the suppression of polyphosphate-accumulating organisms (PAOs) growth and activity. N2O production and emission factor decreased greatly by the addition of Cu2+. This decrease was caused by the enhancement of nitrite reductase and N2O reductase (N2OR) activities. On the contrary, Fe3+ addition at moderate concentrations stimulated the N2O production. Fe3+ enhanced the nitric oxide reductase (NOR) and increased the NOR/N2OR ratio, leading to the accumulation of N2O. Moreover, addition of Fe3+ caused a reduction in polyhydroxyalkanoates synthesis at the anaerobic stage and renforced glycogen-accumulating organisms (GAOs) activity instead of PAOs activity, resulting in increased N2O accumulation. Addition of high concentrations of metal ions (5 mg/L Cu2+ and 60 mg/L Fe3+ in this study) suppressed the nutrients removal and stimulated the N2O production, partly due to the inhibition of the bacterial activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call