Abstract
Contamination in coastal aquifer plains is of great concern in many countries given that non-aqueous phase liquids (NAPLs) have polluted numerous sites through accidental oil spills or improper disposal. We have developed a method to remove pollutants such as NAPLs from sandy sediment samples collected from the Mandol area of Gomso Bay in western South Korea. The sediments were collected from around the diffuser in a two-dimensional (2D) acrylic reaction apparatus, and these contained a total petroleum hydrocarbon (TPH) concentration of 89.3 ppm (mg/kg media). The maximum perchloroethylene (PCE) concentration was 398.51 ppm in the unsaturated zone and 0.77 ppm in the saturated zone. Volatile organic compounds (VOCs) were detected between 20 and 44 hour. However, non-volatile contaminants remained in the sediments after treatment. In situ air sparging (IAS) combined with soil vapor extraction (SVE), transformation from sorbed and nonaqueous phases to the vapor phase, is incomplete when treatment is performed using a pervasive air flow for sediments such as the sand of Mandol. During air transformation, the groundwater flow conditions increased the rate of contaminant removal. Although pilot-scale testing in the field site was fluctuated due to the heterogeneous of sediments condition, this 2D study found that the proposed method can alter the measurable geophysical properties of NAPLs. These findings demonstrate that IAS combined with SVE in the saturated zone is an effective technology for aquifer remediation high applicability of sandy coastal sediments contaminated by NAPLs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Environmental Science and Health, Part A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.