Abstract

The constant surge in nitric oxide in the atmosphere results in severe environmental degradation, negatively impacting human health and ecosystems, and is presently a global concern. Widely used physicochemical technologies for nitric oxide (NO) removal comes with high installation and operational costs and the production of secondary pollutants. Thus, biological treatment has been emphasized over the last two decades, but the poor solubility of NO in water makes it a challenging issue. The present article reviews the various technical aspects of biological treatment of nitric oxide, including the removal pathways and reactor configurations involved in the process. The most widely used technologies in this regard are chemical adsorption processes followed by biological reactors like biofilters, biotrickling filters and membrane bioreactors that enhance NO solubility and offer the flexibility and scope of further improvement in process design. The effect of various experimental and operational parameters on NO removal, including pH, carbon source, gas flow rate, gas residence time and presence of inhibitory components in the flue gas, is also discussed along with the developed mathematical models for predicting NO removal in a biological treatment system. There is an extensive scope of investigation regarding the development of an economical system to remove NO, and an exhaustive model that would optimize the process considering maximum practical parameters encountered during such operation. A detailed discussion made in this article gives a proper insight into all these areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call