Abstract

Activated carbon from a locally available and widespread tea waste source was fabricated, characterized and used as an efficient adsorbent for the removal of Ni2+ from aqueous solutions. The response surface methodology (RSM) and central composite design (CCD) were used to investigate the effect of the essential variables including initial concentration, adsorbent dosage and pH solution on the absorption of Ni2+. The order polynomial regression equations–based model has been developed and found to be statistically significant by values of the coefficients of determination (R2) closer than 1.0 and the P–values < 0.0001 from analysis of variance (ANOVA). Based on the predicted optimum conditions, actual experiment was employed to obtain the maximum percentage of Ni2+ removal efficiency (96.6 %). There is no doubt that the use of tea waste as abundant raw material for the preparation of activated carbon to remove Ni2+from aqueous solutions by five times with negligible change is a promising way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.