Abstract

Nanoplastic pollution poses a significant global concern for public health due to the potential toxicity it induces in the human body through food and water intake. Consequently, the urgent task of removing nanoplastics, especially from water resources, is paramount for enhancing food safety, and developing eco-friendly materials capable of efficiently removing nanoplastics is crucial. In this context, we propose the use of biodegradable anionic seaweed cellulose nanofibers (TEMPO-mediated seaweed cellulose nanofibers, TCNFs) and cationic seaweed cellulose nanofibers (quaternized seaweed cellulose nanofibers, QCNFs) for nanoplastic removal in both single- and copollutant systems. In our experiments under simulated practical conditions, we revealed that TCNFs and QCNFs achieved an average removal efficiency of 98.71% against nanoplastic particles. Moreover, TCNFs and QCNFs exhibited higher adsorption capacities compared to those of existing materials, potentially offering a cost-effective advantage. Toxicity assessments conducted with mammalian cells further confirmed the biosafety of TCNFs and QCNFs. This study contributes to the scientific and theoretical understanding of using edible seaweed as well as offers promising solutions for food safety control in an efficient, cost-effective, and eco-friendly manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call