Abstract

Granular biochar made from walnut shells was layered into sand-based constructed wetlands (CWs) to treat simulated mining-impacted water (MIW). The results showed that the biochar media exhibited markedly high capacities for metal binding and acidity neutralization, supported notably better plant growth and mitigated metal transfer from the plant roots to the shoots. The addition of organic liquid wastes (domestic sewage and plant straw hydrolysation broth) stimulated biogenic sulfate reduction after 40 d of adaptation to effectively remove multiple heavy metals in the MIW. The microbial community compositions were prominently regulated by organic carbon, with desirable communities dominated by Cellulomonas and Desulfobulbus formed in the CWs for MIW biotreatment. The role of macrophytes in the CWs in MIW treatment was insignificant and was dependent on operation conditions and metal species. A biochar-packed CW system with liquid organic waste supplementation was effective in metal removal and acidity neutralization of MIW.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.