Abstract
Microplastics (MPs) as an emerging pollutant can affect aquatic organisms through physical ingestion, chemical problems and possible creation of biological layers on their surfaces in the environment. One of the significant ways for MPs to enter the aquatic environment is through the effluent discharge of wastewater treatment plants (WWTPs). In this study, first, the concentration and characteristics of MPs in secondary wastewater effluent, and the influential variables related to the coagulation process, for MPs removal were identified using systematic reviews of previous studies. Then, the most proper MPs characterization and coagulation variables were chosen by experts’ opinions using a fuzzy Delphi method. Therefore, the experiment tested in conditions close to the full-scale wastewater treatments. Finally, in the laboratory removal of MPs by coagulation of polyamide (PA), polystyrene (PS), and polyethylene (PE), < 125 and 300–600 μm in size, was tested by a jar test applying Al2(SO4)3 in doses of 5 to 100 mg/L plus 15 mg/L polyacrylamide as a coagulant aid. Using R and Excel software, the results were analyzed statistically. It was concluded that the maximum and minimum removal efficiency was 74.7 and 1.39% for small PA and large PE, respectively. Smaller MPs were found to have higher removal efficiency. The MPs type PA achieved greater removal efficiency than PS, while PE had the least removal efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.