Abstract
The occurrence of micropollutants in wastewater is largely documented as well as the environmental risk posed by their residues in the aquatic environment. Many investigations have been carried out and plan to study and improve their removal efficiency in existing wastewater treatment plants. At the same time, efforts are being made to develop new technologies or upgrade existing ones to increase the removal of a selection of micropollutants. Due to the great variability in their chemical and physical properties, it would be advisable to find representative compounds or identify the factors which most influence the removal mechanisms under specific conditions. This study analyses the removal efficiencies of a great number of micropollutants in wastewater treated in a membrane bioreactor coupled with powdered activated carbon (PAC), which was the subject of a review article we have recently published. The main operational parameters (i.e. PAC dosage, PAC retention time and sludge retention time) and compound physico-chemical properties (i.e. octanol-water distribution coefficient, charge and molecular weight) were first selected on the basis of a dedicated screening step and then an attempt was carried out to clarify their influence on the removal of micropollutants from wastewater during its treatment. To this end, a statistical analysis, mainly based on exploratory methods (cluster analysis and principal component analysis) and regression analysis, was carried out to compare and discuss the different results published in the scientific literature included in the cited review article. It emerged, that, based on the collected dataset, micropollutant charge and LogDow seem to play the most important role in the removal mechanisms occurring in MBR coupled with PAC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.