Abstract

Cyanobacterial blooms are becoming a serious challenge across the globe due to changing climate and rainfall patterns as a consequence of human activities. In the present study, the fundamental interactions involved during the removal of Microcystin-LR (MCLR), one of the most commonly occurring cyanobacterial toxins, were investigated by employing strongly basic anion exchange (IX) resins. Several factors including the stoichiometric coefficients, competitive fractions and solute affinities were determined under various concentrations of inorganic ions and natural organic matter. The results indicated that suphates were the most competitive fractions with high affinity (α (affinity coefficient) values ~ 9) followed by nitrates (α ~ 4.7) and NOM fractions (α ~ 4.5, p < 0.05). The Equivalent Background Concentration Mode (EBC), that arises from the Ideal Adsorption Solution Theory (IAST), indicated a competitive fraction of ~2 μeq/L NOM, which approximates to <10% of the initial NOM concentrations, indicating a small fraction of the NOM resulting in the competitive effect. Further, studies with natural surface waters indicated that the MCLR uptake could be modeled using the IAST-EBC model and the IX resin could simultaneously removal of >90% of NOM, inorganic ions and MCLR at resin dosages of 3.6 meq/L or higher.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call