Abstract
The intimate coupling of photocatalysis and biodegradation (ICPB) technology has received much attraction because of the advantages of both photocatalytic reaction and biological treatment. In this study, ZnO–CoFe2O4@BC (ZCFC) with p-n heterojunction was prepared and used in an ICPB system to degrade metronidazole (MNZ) wastewater. The microstructure, morphology, and optical behavior of heterojunctions in ZCFC were investigated using SEM, XRD, UV–vis, FTIR, and XPS techniques. The results showed that ZCFC inherited the advantages of bamboo biochar's large pore size, and its large pore structure could provide a habitat for bacterial colonization in ICPB, thus shortening the internal mass transfer distance. The degradation of MNZ and chemical oxygen demand (COD) by the ICPB system was 86.8% and 58.5%, respectively, which was superior to single photocatalysis (72.5% for MNZ and 43.8% for COD) and single biodegradation (23.5% for MNZ and 20.1% for COD). In ICPB, photocatalysis and biodegradation showed a synergistic effect in the removal of MNZ, and the order of the major reactive oxygen species (ROS) leading to reduced toxicity of MNZ to the biofilm was •OH > h+ > O2•-. High-throughput sequencing analysis showed continuous evolution of biofilm structures in ICPB enriched a variety of functional species, among which the electroactive bacteria Alcaligenes and Brevundimonas played an important role in the degradation of MNZ. In this study, we investigated the possible mechanism of photocatalytic and microbial synergistic degradation of MNZ in the ICPB system and proposed a new technology for degrading antibiotic wastewater that combines the advantages of photocatalysis and biodegradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.