Abstract

Organic dyes in the aqueous solutions and textile effluents cause severe environmental pollution due to their carcinogenic and mutagenic nature. Ultrasound (US) cavitation is one of the promising advanced oxidation processes (AOP) to remove the organic dyes from the aqueous solutions and textile effluents. Nevertheless, the conventional low-frequency US cavitation process exhibits very low efficiency in the dye removal process and demands effective modification to improve its performance. In this investigation, a conventional pulsed low-frequency (22 ± 2kHz) US cavitation process has been modified by varying the US power (50-150W), initial solution pH (2-10), and O2 flow rate (1-4 L min-1) to enhance the decomposition of cationic methylene blue (MB) dye in an aqueous solution. The operation of the classic Haber-Weiss reaction, both in the forward and backward directions, and the ozone effect have been observed, for the first time, under the modified US cavitation process, as confirmed via the radical trapping experiments. Moreover, the hydrothermally synthesized hydrogen titanate (H2Ti3O7) nanotubes (HTN) have been utilized as sonocatalyst, for the first time, for 100% dye removal, with effective regeneration obtained via an in-situ thermal activation of persulfate (PS, S2O82-). The most optimum values of US power, initial solution pH, O2 flow rate, HTN, and PS concentrations for 100% MB decomposition are observed to be 150W, 2, 2 L min-1, 0.3g L-1, and 10mM, respectively. The decomposition of industrial azo reactive dyes in an aqueous solution as well as in a textile effluent has also been demonstrated using a modified pulsed low-frequency US cavitation process involving the thermal activation of PS without the use of HTN, which justifies its suitability for a commercial application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.