Abstract

Discharge of metal-containing wastewater streams into the environment is an environmental concern because these pollutants do not degrade and tend to bioaccumulate. A number of laboratory-based investigations on the effectiveness of a wide range of filter materials for metal removal from diluted wastewater streams have been reported. However, only a few pilot or full-scale investigations have been conducted. Therefore, this study investigated the metal retention capabilities of mineral-based filter materials (commercially available mineral product (5–15 mm), recycled mineral material (2–4 mm) and slag by-product (2–4 and 4–16 mm)) when used in pilot-scale filter systems under continuous operation in a closed mining area in North Ostrobothnia, Finland, between June and October 2017. The influence of material particle size on system function and on metal retention efficiency was also evaluated. The results revealed that system performance was dependent on material composition and particle size (smaller particle size being more effective). The highest metal removal efficiencies (Zn, Ni, Cd, Cu and Pb) and largest amount of water treated (per volume of material applied) were achieved by an aluminium oxide-based recycled mineral material (2–4 mm). While smaller-grained materials performed better in terms of removal efficiency, the removal rates achieved by coarser-grained, commercially available mineral product (5–15 mm) were comparable to those achieved by small-grained slag (2–4 mm). Full-scale systems using the recycled mineral product (2–4 mm) would have an approximately two-fold longer material replacement time than systems using the slag (2–4 mm). Replacement time for the larger-grained materials tested could not be determined, due to problems with freezing. Overall, the recycled mineral material tested can be recommended for full-scale tests, especially when high zinc removal rates are required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.