Abstract

Dynamic column adsorption of mercury(II) from aqueous solutions on an Amberlite GT-73 cationite is studied. Experimental measurements derive the dependences C/C0 = f(t) (breakthrough curves), where C0 and C are the concentrations of mercury in the water flow inflowing to the sorbent fixed bed and outflowing from it, respectively, and t is the running time for different thicknesses of the fixed bed, as well as deriving rates of water flow and concentrations of mercury C0. It is shown that if the breakthrough curves belong to the logistic type, dependences of ln (C0/C − 1) on t are rectified and have the form ln (C0/C − 1) = a0−a1t, where the parameters a0 = kqmM/Q and a1 = kC0, k is the rate constant of adsorption, qm is the dynamic adsorption capacity, M is the weight of the adsorbent, and Q is the volumetric flow rate. By transforming the experimental dependence of the first type to the second type followed by its description using this straight line function, the aforementioned parameters a0 and a1 are determined followed by the quantities k and qm, characterizing the adsorption of mercury on the cationite. It is found that the relative standard deviation is ≤2% for the experimental quantities k and qm. A formula for the calculation of the service lifetime of the adsorbent maintaining the regulated degree of purification of water is derived. The formula is successfully tested in the experiments on the removal of mercury from water described in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.