Abstract

Chlorella-based biomass from the algae-manufacturing waste was used as a low-cost biosorbent for the biosorption of malachite green (MG) in an agitated batch experiments with respect to its kinetics as a function of agitation speed (i.e., 300-500 rpm), initial MG concentration (i.e., 2.0-20.0 mg dm(-3)), biosorbent loading (i.e., 0.5-2.0 g/2.0 dm(3)), initial pH (i.e., 3.0-11.0), and temperature (i.e., 278-318 K). The experimental data revealed that the rapid removal of cationic solute using the dead microalgae significantly depended on the initial MG concentration and algal loading. Furthermore, the biosorption kinetics well obeyed the pseudo-second-order rate equation, and could be elucidated by considering the electrostatic interactions. According to the biosorption behaviors of MG from aqueous solution using chlorella-based biomass in comparison with commercial activated carbon, this work also showed that the biosorbent can be effectively used as a low-cost biosorbent for the removal of MG from its aqueous solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call