Abstract

Synthetic dyes are toxic and their release into the environment harms the ecosystem. Phycoremediation of synthetic dyes with acclimatized and native species has advantages over other methods. In this study, textile effluent-acclimatized microalgae species of Oscillatoria were grown in Bold’s Basal Medium (BBM), dried, powdered using sonication, and optimized the removal malachite green (MG), using the response surface methodology (RSM). The effects of algal biosorbent concentration (AC), pH, and contact time (CT) were studied with 1 g L−1 MG in an aqueous solution, and the interaction model exerted significance (p < 0.001). The removal of MG was higher at alkaline pH (90% at pH 8.5) than at acidic pH (70% at pH 4). Under the optimized conditions of 1.2 g L−1 AC, 8.5 pH, and 30 min CT, the MG removal was documented at 90.8% with the biosorption capacity of 757 mg g−1. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analysis revealed the occurrence of different electronegative functional groups, aromatic vibrations, and the crystalline nature of the biosorbent. The algal sorbent exhibited a good performance of 80.9% for the removal of the crude color in real textile effluents. This microalgal sorbent is an attractive option for promoting large-scale applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.