Abstract

ABSTRACT Natural organic materials, principally humic acids cause serious problems in water treatment plants due to combination with chlorine and the formation of carcinogenic disinfection by-products. In the present study, the Fe3O4@L-arginine magnetic nanoparticle was synthesised and used to adsorbhumic acid (HA) from the aqueous solution. Fe3O4@L-arginine nanoparticles were prepared withthe co-precipitation method and characterised by FE-SEM, FTIR, XRD, and zeta potential analysis. The effect of different parameters on the HA removal by Fe3O4@L-arginine was investigated. The results showed that by increasing the adsorbent dose, contact time and temperature, the efficiency of HA removal increased, but by increasing theinitial concentration of HA, ionic strength, and pH, the efficiency of HA elimination decreased. Under optimal conditions, the highest HA removal efficiency in 0.5 g/L and 2 g/L adsorbent doses was found to be 67.23% and 96.4%, respectively. Also, the study of isotherm and kinetic of adsorption showed that the adsorption of HA on Fe3O4@L-arginine followed Langmuir isotherm and pseudo-second-order kinetic.Adsorption experiments demonstrated that Fe3O4@L-arginine as an effective and reusable adsorbent has a good capacity for the removal of HA from aqueous solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.