Abstract

Porous silica supported nanoscale zero-valent iron was prepared by a polymer template method in order to effectively remove a hexavalent chromium ion (Cr(VI)) in an aqueous solution. It did not show a deterioration of Cr(VI) removal efficiency, which could be caused by the surface oxidation and agglomeration of nanoscale zero-valent iron (NZVI) particles. Porous silica by the polymer template method showed quite unique structure, which we named as quasi-inverse opal silica (QIOS), and it showed high surface area (375.4m2/g) and fine pore size (76.5 nm). NZVI immobilized on the surface of QIOS (NZVI@QIOS) was added to an aqueous Cr(VI) solution at 0.025 g/L, and it showed over 96% Cr(VI) removal efficiency. Such a high removal efficiency of Cr(VI) was maintained over two weeks after preparation (92% after 16 days). Morphology of porous silica supported nanoscale zero-valent iron was analyzed by TEM and FE-SEM. Identification of the reaction compounds produced by the reaction of Cr(VI) and zero-valent iron (Fe(0)) was made by the application of XPS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call