Abstract

In this work, spruce bark was used as a raw material to remove Cr(VI) ions from aqueous solutions. Three kinds of chemically modified bark adsorbents were prepared by treatment with formaldehyde (FB), dilute sulfuric acid (AB), and concentrated sulfuric acid (CB), respectively. The chemical modifications mainly changed the relative lignin content in the bark. Lower pH facilitated the adsorption of Cr(VI) ions because reduction of Cr(VI) ions to Cr(III) ions occurred during the adsorption process which consumed a large amount of H+ ions. Higher temperature accelerated the adsorption process, owing to the endothermic nature of the redox reaction. At initial solution pH around 1, the adsorption capacities of Cr(VI) ions on FB, AB, and CB were as high as 423, 503, and 759 mg/g, respectively, which were much higher than the reported adsorption capacities by other agricultural and forest biosorbents in the literatures. XPS analysis revealed the adsorption mechanism was adsorption-coupled reduction involving the electron-donor groups of lignin moieties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call