Abstract

Industrial plants powered by heavy oil routinely experience problems with leaks in different parts of the system, such as during oil transport, the lubrication of equipment and mechanical failures. The surfactants, degreasing agents and solvents that make up detergents commonly used for cleaning grease-covered surfaces are synthetic, non-biodegradable and toxic, posing risks to the environment as well as the health of workers involved in the cleaning process. To address this problem, surfactant agents of a biodegradable nature and low toxicity, such as microbial surfactants, have been widely studied as an attractive, efficient solution to replace chemical surfactants in decontamination processes. In this work, the bacterial strains Pseudomonas cepacia CCT 6659, Pseudomonas aeruginosa UCP 0992, Pseudomonas aeruginosa ATCC 9027 and Pseudomonas aeruginosa ATCC 10145 were evaluated as biosurfactant producers in media containing different combinations and types of substrates and under different culture conditions. The biosurfactant produced by P. aeruginosa ATCC 10145 cultivated in a mineral medium composed of 5.0% glycerol and 2.0% glucose for 96 h was selected to formulate a biodetergent capable of removing heavy oil. The biosurfactant was able to reduce the surface tension of the medium to 26.40 mN/m, with a yield of approximately 12.00 g/L and a critical micelle concentration of 60.00 mg/L. The biosurfactant emulsified 97.40% and dispersed 98.00% of the motor oil. The detergent formulated with the biosurfactant also exhibited low toxicity in tests involving the microcrustacean Artemia salina and seeds of the vegetable Brassica oleracea. The detergent was compared to commercial formulations and removed 100% of the Special B1 Fuel Oil (OCB1) from different contaminated surfaces, demonstrating potential as a novel green remover with industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.