Abstract
The removal of heavy metals from storm and surface waters by slow sand filtration is described. The importance of speciation as a technique for exploring and improving the mechanisms of removal is identified. Laboratory-scale slow sand filters operating at conventional flow rate and depth were shown to be able to reduce concentrations of selected heavy metals (Cu, Cr, Pb and Cd) found in road runoff, surface water and sewage effluents to drinking water standard. Nitrogen, volatile solids and modified Stover speciation were used to differentiate between the potential mechanisms of removal, i.e. active biomass, organic adsorption and simple adsorption or precipitation on the surface of the sand. The data presented show that adsorption via organic ligands was the predominant mechanism for metal removal at the surface of the filter but chemical adsorption was the more important deeper in the filter. In the lower layers the adsorbed metals were more easily exchanged than the organically bound metals. The precise chemical ligands were not identified and varied from metal to metal. The most important operational factors affecting performance were therefore the concentration of organic matter, filter depth and the flow velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Urban Water Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.