Abstract

There is an increase in concern about the hazardous effects of radioactivity due to the presence of undesirable radioactive substances in our vicinity. Nuclear accidents such as Chernobyl (1986) and Fukushima (2011) have further raised concerns towards such incidents which haveled to contamination of water bodies. Conventional methods of water purification are less efficient in decontamination of radioisotopes. They are usually neither cost-effective nor environmentally friendly. However, nanotechnology can play a vital role in providing practical solutions to this problem. Nano-engineered materials like metal oxides, metallic organic frameworks, and nanoparticle-impregnated membranes have proven to be highly efficient in treating contaminated water. Their unique characteristics such as high adsorption capacity, large specific surface area, high tensile strength, and excellent biocompatibility properties make them useful in the field of water purification. This review explores the present status and future prospects of nanomaterials as the next-generation water purification systems that can play an important role in the removal of heavy metals and radioactive contaminants from aqueous solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.