Abstract

This paper is concerned with algebraic features based filtering technique, named as the adaptive statistical quality based filtering technique (ASQFT), is presented for removal of Impulse and Gaussian noise in corrupted colour images. A combination of these two filters also helps in eliminating a mixture of these two noises. One strong filtering step that should remove all noise at once would inevitably also remove a considerable amount of detail. Therefore, the noise is filtered step by step. In each step, noisy pixels are detected by the help of fuzzy rules, which are very useful for the processing of human knowledge where linguistic variables are used. The proposed filter is able to efficiently suppress both Gaussian noise and impulse noise, as well as mixed Gaussian impulse noise. The experiments shows that proposed method outperforms novel modern filters both visually and in terms of objective quality measures such as the mean absolute error (MAE), the peaksignal- to-noise ratio (PSNR) and the normalized color difference (NCD). The expectations filter achieves a promising performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.