Abstract

The complex fibrillar architecture of native meniscus is essential for proper function and difficult to recapitulate in vitro. In the native meniscus, proteoglycan content is low during the development of collagen fibers and progressively increases with aging. In vitro, fibrochondrocytes produce glycosaminoglycans (GAGs) early in culture, in contrast to native tissue, where they are deposited after collagen fibers have formed. This difference in the timing of GAG production hinders the formation of a mature fiber network in such in vitro models. In this study, we removed GAGs from collagen gel-based tissue engineered constructs using chondroitinase ABC (cABC) and evaluated the effect on the formation and alignment of collagen fibers and the subsequent effect on tensile and compressive mechanical properties. Removal of GAGs during maturation of in vitro constructs improved collagen fiber alignment in tissue engineered meniscus constructs. Additionally, removal of GAGs during maturation improved fiber alignment without compromising compressive strength, and this removal improved not only fiber alignment and formation but also tensile properties. The increased fiber organization in cABC-treated groups also appeared to influence the size, shape, and location of defects in these constructs, suggesting that treatment may prevent the propagation of large defects under loading. This data gives another method of modulating the ECM for improved collagen fiber formation and mechanical properties in tissue engineered constructs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call