Abstract
The removal of fluoride from wastewater is essential as the excess accumulation of fluoride in environment is harmful to the health of humans. In this study, the defluorination of water by aluminum hydroxide-coated zeolite (AHZ), which was synthesized from coal fly ash, was investigated in batches. The Langmuir maximum adsorption capacity of fluoride by AHZ reached 18.12 mg/g. Aluminum hydroxide was shown to be the major component that adsorbed fluoride. More than 92% removal of fluoride was achieved within 2 h, and the fluoride adsorption kinetics were well fitted to a pseudo-second-order model. The point of zero charge (pHpzc) of the AHZ was determined to be 5.52. Fluoride adsorption by AHZ depended greatly on pH, and maximum performance was obtained at pH 5.5–6.5. The AHZ showed good selectivity for the adsorption of fluoride in the presence of chloride, nitrate, sulfate, bicarbonate, and acetate ions, and the fluoride was nearly exhausted at a sufficiently high dose. The release of OH− due to fluoride adsorption was confirmed. FTIR and XPS studies further illustrated that the adsorption mechanism of fluoride adsorption on AHZ was ligand exchange with hydroxyl groups and the formation of F–Al bonds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.